
            Свободный доступ
        
 
        
            
            Ограниченный доступ
        
 
        
        
     
 
	
		
			
			
			
			Автор: Краюхин 
Приведено описание трех нестационарных тестовых задач, предназначенных для верификации упругопластических методик. Первая задача связана с определением скорости движения продольной волны в упругой среде различной конфигурации: неограниченной среде, пластине и стержне. В качестве второй предлагается задача об ускорении системы упругих элементов импульсом давления или ударником. Получено ее аналитическое решение для системы из трех элементов в виде стержней или пластин. Третья задача связана с распространением плоской упругопластической волны по неограниченной среде. Проведено ее подробное аналитическое исследование. Представлены результаты численного моделирования этих задач по методике ЭГАК
 
		 
	
		
			
			
			
			Автор: Панов 
Представлены некоторые алгоритмы построения неструктурированных многоугольных сеток при расчете начальных данных для методики ТИМ-2D. Приведено описание формата хранения топологии сетки. Описаны метод, с помощью которого выполняется отсечение ячеек границами счетной области, и метод, позволяющий объединять сетки различных типов в рамках одной счетной области. Даны практические рекомендации по использованию тех или иных типов сеток в зависимости от специфики решаемых задач
 
		 
	
		
			
			
			
			Автор: Сидоров 
Представлен параллельный метод построения призматической неструктурированной сетки, используемой для дискретизации сложных геологических структур при численном моделировании нефтяных и гидрогеоэкологических задач. Метод позволяет проводить адаптацию сетки к различным типам объектов (скважины сложной траектории, геологические разломы, пласты и т. п.) и обладает высокой скоростью построения Данный метод реализован в программном комплексе НИМФА.
 
		 
	
		
			
			
			
			Автор: Конюхов 
Рассматриваются вопросы математического и численного моделирования процесса фильтрации неньютоновской нефти и подошвенной воды в трещиновато-пористом пласте, вскрытом вертикальной добывающей скважиной, работающей в режиме заданного дебита. Система уравнений двухфазной фильтрации в трещинах и блоках учитывает гравитационные силы, обусловленные различием плотностей фаз, сжимаемость нефти, воды и пород пласта, зависимость абсолютной проницаемости трещин от давления в пласте, неньютоновское поведение нефти в зависимости от модуля скорости фильтрации. Для численного решения задачи разработаны соответствующие алгоритмы, реализованные в программном комплексе. Проведен анализ влияния различных фильтрационно-емкостных и геометрических параметров коллектора, а также режима работы скважины на нефтеотдачу пласта
 
		 
	
		
			
			
			
			Автор: Гинкин 
Предлагается неравновесная модель процесса кристаллизации двухкомпонентных расплавов, в которой численно решается задача Стефана с двумя границами: твердая фаза ! двухфазная переходная зона и двухфазная зона ! жидкая фаза. Двухфазная зона представлена пористой средой с переменной пористостью. Учитывается дополнительная сила сопротивления течению расплава в пористой среде по аналогии с законом Дарси. Сравниваются решения с линейной и квадратичной зависимостями объемной доли жидкой фазы от температуры. Приведены результаты расчетов эксперимента по кристаллизации расплава Sn с 20%-ным содержанием Pb методом направленной вертикальной кристаллизации, которая ведется сверху вниз по направлению вектора гравитации
 
		 
	
		
			
			
			
			Автор: Воропинов 
Рассматривается ряд форматов данных для представления двумерной или поверхностной неструктурированной сетки произвольного вида (ячейки ! произвольные многоугольники, в узлах сходится произвольное количество ребер). В основу предлагаемых форматов положен принцип выделения основного элемента сетки. Для рассматриваемых форматов приводятся замеры требуемой памяти, оценки скорости работы с ними. На примере методики ТИМ-2D измеряется доля накладных расходов на выполнение алгоритмов получения информации о соседстве элементов сетки по отношению к расчету физических процессов
 
		 
	
		
			
			
			
			Автор: Воропинов 
Рассматривается ряд форматов данных для представления двумерной или поверхностной неструктурированной сетки произвольного вида (ячейки – произвольные многоугольники, в узлах сходится произвольное количество ребер). В основе предложенных форматов лежит принцип выделения основного элемента сетки. Для структур приводятся замеры требуемой памяти, оценки скорости работы. На примере методики ТИМ-2D измеряется доля накладных расходов на работу алгоритмов получения соседства по отношению к расчету газовой динамики
 
		 
	
		
			
			
			
			Автор: Дорохов Алексей Семенович
				Колос-с: М.
			Рассмотрены: виды проецирования, ортогональные системы двух и трех плоскостей проекции, способы задания геометрических объектов на них, методы преобразования проекций, поверхностей, позиционные и метрические задачи, примеры применения методов начертательной геометрии при проектировании рабочих органов сельскохозяйственных машин.
 
				
				Предпросмотр: Начертательная геометрия (2).pdf (0,2 Мб)
			
		 
	
		
			
			
			
			Автор: Дерюшев Л. Г.
				МГСУ: М.
			Изложены основы теории вероятностей, математической статистики и теории надежности, которые применяются при решении задач по оценке и обеспечению надежности сооружений систем водоснабжения. Приведены примеры оценки надежности сооружений систем водоснабжения.
 
				
				Предпросмотр: Надежность сооружений систем водоснабжения.pdf (0,2 Мб)
			
		 
	
		
			
			
			
			Автор: Пегат Анджей 
				Лаборатория знаний: М.
			В настоящем издании дается развернутое введение в проблемы нечеткого
и нейронечеткого моделирования применительно к задаче управления
системами. Материал основан на новейших результатах в данной области
и иллюстрируется многочисленными примерами.
 
				
				Предпросмотр: Нечеткое моделирование и управление (2).pdf (0,2 Мб)
			
		 
	
		
			
			
			
			Автор: Лагутин М. Б.
				Лаборатория знаний: М.
			Основы теории вероятностей и математической статистики излагаются в форме примеров и задач с решениями. Книга также знакомит читателя с прикладными статистическими методами. Для понимания материала достаточно знания начал математического анализа. Включено большое количество рисунков, контрольных вопросов и числовых примеров. 
 
				
				Предпросмотр: Наглядная математическая статистика.pdf (0,9 Мб)
			
		 
	
		
			
			
			
			Автор: Цветкович  
Диагональное преобладание в матрице является простым условием, обеспечивающим ее невырожденность. Свойства матриц, которые обобщают понятие диагонального преобладания, всегда очень востребованы. Они рассматриваются как условия типа диагонального преобладания и помогают определять подклассы матриц (типа H-матриц), которые при этих условиях остаются невырожденными. В данной работе строятся новые классы невырожденных матриц, которые сохраняют преимущества диагонального преобладания, но остаются вне класса H-матриц. Эти свойства особенно удобны, поскольку многие приложения приводят к матрицам из этого класса, и теория невырожденности матриц, которые не являются Н-матрицами, теперь может быть расширена.
 
		 
	
		
			
			
			
			Автор: Петухов  
Доказано, что всякий простой (g, t) -модуль конечного типа голономен. Всякому простому g-модулю M соответствуют инварианты, отражающие направления его роста. Также доказывается, что для фиксированной пары (g, t) набор возможных значений для упомянутых инвариантов конечен.
 
		 
	
		
			
			
			
			Автор: Мухин Владимир Васильевич
				Северный (Арктический) федеральный университет имени М.В. Ломоносова
			В работе изучаются гомоморфизмы топологических абелевых n-арных полугрупп с сокращениями в группу по умножению всех комплексных чисел по модулю равных 1. Такие отображения называются характерами. Множество всех непрерывных характеров топологической n-арной полугруппы X обозначаем
ˆX . Относительно поточечного умножения характеров множество ˆX является бинарной группой. В качестве предварительного результата показано, что абелеву n-арную полугруппу с сокращениями X можно рассматривать в качестве n-арной подполугруппы n-арной группы G, которую по аналогии с бинарным
случаем можно назвать n-арной группой частных абелевой n-арной полугруппы с сокращениями. В теореме 1 показано, что каждый характер абелевой n-арной полугруппы естественным образом продолжается до характера на n-арную группу ее частных. Группа ˆX наделяется топологией равномерной сходимости на компактных множествах. В теореме 2 устанавливается, что эта топология согласована с групповой структурой, т. е. ˆX становится топологической бинарной группой. В теореме 3 найдены условия, при которых
группа ˆX алгебраически и топологически изоморфна группе ˆG . Группу непрерывных характеров бинарной группы ˆX обозначаем символом ˆˆX . По аналогии с бинарным случаем рассматривается естественное
отображение p из X в ˆˆX , которое для каждого x из X соотносит характер ( ) x p группы ˆX в соответствии с формулой ( )( ) ( ) x x p χ = χ ( ) ˆX χ∈ . В теореме 4 устанавливается, что если на топологической абелевой n-арной полугруппе с сокращениями X существует ненулевая инвариантная борелевская мера, то отображение p непрерывно и инъективно, X обладает непустым открытым множеством U таким, что сужение p на U является гомеоморфизмом U на открытое подмножество ( ) U p группы ˆˆX .
 
		 
	
		
	
		
			
			
			
			Автор: Андреев Павел Дмитриевич
				Северный (Арктический) федеральный университет имени М.В. Ломоносова
			В статье изучается геометрия G-пространства Буземана конического типа, т. е. такого G-пространства X неположительной кривизны, касательный конус K X которого изометричен самому пространству. Геодезические пространства этого класса обладают рядом важных геометрических свойств. Наиболее существенно то, что в этом случае на X действует группа H положительных гомотетий h с центром p. G-пространства конического типа ранее использовались П.Д. Андреевым для доказательства гипотезы Буземана, утверждающей, что всякое G-пространство неположительной кривизны является топологическим многообразием. Основной результат статьи - теорема, утверждающая, что любые два произвольных луча с началом p в пространстве X содержатся в некоторой нормированной плоскости. Здесь под нормированной плоскостью в геодезическом пространстве X понимается выпуклое подмножество, изометричное аффинной плоскости, оснащенной строго выпуклой нормой. Доказательство теоремы опирается на тот факт, что выпуклая оболочка двух не дополнительных друг к другу лучей с общим началом в вершине p есть угол, полученный объединением образов фиксированного отрезка с концами на этих лучах под действием гомотетий вида h, k > 0. Доказанная теорема порождает некоторые дополнительные проблемы. В первую очередь, возникает вопрос, не имеет ли произвольное G-пространство конического типа структуру нормированного пространства в целом? Если ответ на этот вопрос положителен, то появляется новый взгляд на G-пространства неположительной кривизны как на почти финслеровы многообразия. В этом случае единственным отличием G-пространств от финслеровых многообразий будет возможное отсутствие гладкости норм в касательных пространствах.
 
		 
	
		
			
			
			
			Автор: Каширина Ирина Леонидовна
				Издательский дом ВГУ
			Учебно-методическое пособие подготовлено на кафедре математических 
методов исследования операций факультета прикладной математики,  информатики и механики Воронежского государственного университета. 
 
				
				Предпросмотр: Нейросетевые и гибридные системы .pdf (0,9 Мб)
			
		 
	
		
	
		
	
		
	
		
			
			
			
			Задача минимизации невыпуклой функции на шаре сводится к последовательности задач миними-
зации выпуклых ее мажорант на шаре. Для построения мажорант используются представление целевой 
функции в виде разности выпуклых квадратичных функций и результат решения задачи на предыдущем 
шаге. Представление  целевой функции  в виде разности выпуклых  квадратичных  функций базируется на 
модифицированной процедуре декомпозиции Холесского симметричной знакопеременной матрицы.
 
		 
	
		
			
			
			
			Автор: Моханти  
В данной статье рассматриваются: новый явный групповой метод типа переменных направлений
(CRAGE),  итерационный ньютоновский метод CRAGE  для решения нелинейных сингулярных двухто- чечных 
краевых  задач ull   = f (r, u, ul ), 0 < r < 1, при заданных естественных  граничных  условиях 
u(0) = A1 , u(1) = A2 , где A1  и A2  - конечные постоянные, а также численный метод третьего 
порядка на геометрической сетке. Предлагаемый метод применим к сингулярным и несингулярным задачам. 
По- дробно обсуждается сходимость итерационного  метода CRAGE.  Результаты, полученные при помощи 
предложенного итерационного метода CRAGE,  сравниваются с результатами соответствующих итера- 
ционных двухпараметрических явных групповых  методов типа переменных направлений (TAGE) для
демонстрации его вычислительной эффективности.
 
		 
	
		
			
			
			
			Автор: Артемьев  
В работе исследуются проблемы численного анализа стохастических дифференциальных уравнений
с осциллирующими траекториями решения. Для анализа численного решения предлагается использо- вать 
частотные характеристики,  обобщающие интегральную  кривую и фазовый портрет. Приводятся результаты 
численных экспериментов,  проведённых на кластере НКС–30Т  Сибирского суперкомпью-
терного центра при ИВМиМГ СО РАН с использованием комплекса программ PARMONC.
 
		 
	
		
			
			
			
			Автор: Брацихин Андрей Александрович
				изд-во СКФУ
			Учебное пособие представляет собой курс лекций на английском языке по дисциплине "Начертательная геометрия"". Предназначено для иностранных студентов, обучающихся по направлению подготовки 131000,62 - Нефтегазовая промышленность"
 
				
				Предпросмотр: Начертательная геометрия. Курс лекций.pdf (0,4 Мб)
			
		 
	
		
			
			
			
			Автор: Таренко Б. И.
				КНИТУ
			Пособие содержит материалы для развития пространственного мышления, чтения и составления наглядных графических изображений. Рассмотрен метод замены плоскостей проекций для решения метрических задач. Представлены способы решения основных позиционных задач.
 
				
				Предпросмотр: Начертательная геометрия  тексты лекций .pdf (0,7 Мб)
			
		 
	
		
			
			
			
			Автор: Боннар Бернар  
				Институт компьютерных исследований: М.
			Как следует из названия, предлагаемая книга трех авторов посвящена теории управления космическими аппаратами в околоземном пространстве. Однако в действительности содержание монографии шире. Авторы последовательно излагают основы современной теории управления механическими системами, движение которых описывается обыкновенными дифференциальными уравнениями, правые части которых содержат управляющие функции. В первых главах приводятся необходимые сведения по небесной механике, без знания которых невозможно браться за задачу управления в космосе. Поскольку управление в космосе осуществляется с ограниченной точностью, далекой от так называемой астрономической точности, рассматривается нерелятивистская небесная механика. Теория применена к двум классам задач. В первом рассматривается управление ориентацией космического аппарата, движение центра масс которого предполагается известным. Во втором классе рассматривается управление движением космического аппарата как материальной точки с целью перевести его с одной орбиты на другую, отвечающую задачам, для решения которых запущен спутник. 
 
				
				Предпросмотр: Небесная механика и управление космическими летательными аппаратами.pdf (0,4 Мб)
			
		 
	
		
	
		
			
			
			
			Автор: Емельянов Павел Александрович
				РИО ПГСХА
			Учебное пособие является руководством к решению задач по разделам дисциплины «Начертательная геометрия». Содержит общие сведения, теоремы, свойства, примеры решения задач, контрольные вопросы и упражнения для самостоятельного решения. Основное назначение пособия – изучить примеры решения задач по начертательной геометрии, закрепить и углубить навыки их решения. Пособие разработано в соответствии с учебной программой по дисциплине «Начертательная геометрия и инженерная графика».
 
				
				Предпросмотр: НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ.pdf (0,7 Мб)
			
		 
	
		
			
			
			
			
				Горячая линия – Телеком: М.
			Рассмотрены результаты решения актуальной научно-технической проблемы создания динамических математических моделей сложных социальных и экономических систем, применимых для решения задач повышения эффективности управления. В рамках этой проблемы решалась фундаментальная задача разработки математической модели эволюционной динамики социальных систем, характеристики которых типичны для систем менеджмента качества вуза. В результате исследования разработана процедура генерации комбинированных моделей социально-экономических систем, предложен метод формирования многомерных ключевых показателей на основе теории нечетких множеств и сбалансированной системы показателей и целей. Разработаны модели эволюционного поля социально-экономических систем, а также комбинированные динамические модели принятия решений в социально-экономических системах. Созданы методы и комбинированные алгоритмы определения пространственно-временной корреляции. Разработаны методы и комбинированные алгоритмы анализа на основе теории катастроф. Проведено вычисление пространственно-временных корреляционных функций в форме мод Карунена-Лова и определены веса корреляций и структуры, оказывающие определяющее влияние на поведение образовательной организации. Разработан прототип информационно-аналитической системы поддержки системы менеджмента качества вуза. Предложены принципы и схема построения комбинированных моделей для исследования и управления сложными социально-экономическими системами. 
 
				
				Предпросмотр: Новые методы математического моделирования динамики и управления формированием компетенций в процессе обучения в вузе. (1).pdf (0,2 Мб)
			
		 
	
		
			
			
			
			Автор: Бродская Л. И.
				Издательство Уральского университета
			В пособии рассматриваются примеры задач управления, не обладающих устойчивостью при ослаблении ограничений. В таких задачах основной интерес представляют решения «на грани фола», позволяющие существенно улучшить результаты, получаемые при точном соблюдении ограничений исходной задачи в классе обычных управлений. Основное внимание уделяется примерам задач о построении и исследовании областей достижимости управляемых систем. Допуская исчезающе малое ослабление ограничений, авторы приходят к асимптотическому аналогу упомянутых областей – к множеству притяжения. На примерах исследуются возможности описания данных множеств посредством расширений исходной задачи, связанных с применением обобщенных элементов (управлений). Данное издание рекомендовано при проведении спецкурсов по теории управления, а также при выполнении курсовых, квалификационных, дипломных работ и при подготовке магистерских диссертаций.
 
				
				Предпросмотр: Некоторые примеры неустойчивых задач управления.pdf (0,2 Мб)
			
		 
	
		
			
			
			
			Автор: Шевалдина О. Я.
				Издательство Уральского университета
			Пособие содержит теоретические сведения по разделам «Действительные (вещественные) числа» и «Числовые последовательности».
Приводятся фундаментальные понятия и доказательство ряда классических теорем. Пособие содержит большой набор иллюстративных примеров и задач разного уровня сложности с подробными решениями.
 
				
				Предпросмотр: Начало математического анализа.pdf (0,4 Мб)
			
		 
	
		
	
		
			
			
			
			
				КГТУ
			Даны методические указания, задания, алгоритм решения задач,
требования к оформлению заданий и примеры выполнения.
Предназначены для студентов механических специальностей заочной
формы обучения, изучающих дисциплину «Начертательная геометрия».
 
				
				Предпросмотр: Начертательная геометрия.pdf (0,1 Мб)
			
		 
	
		
	
		
			
			
			
			Автор: Хорькова  
				Изд-во МГТУ им. Н.Э. Баумана: М.
			Изложены основы теории накрытий дифференциальных уравнений, в рамках которой оказывается возможным корректное описание различных нелокальных явлений.
 
		 
	
		
	
		
			
			
			
			
				ПРОМЕДИА: М.
			Гиперсингулярные интегралы в настоящее время находят все большие области применения – аэродинамика, теория упругости, электродинамика и геофизика. При этом их вычисление в аналитическом виде возможно лишь в весьма частных случаях. Поэтому приближенные методы вычисления гиперсингулярных интегралов являются актуальной задачей вычислительной математики. Этой задаче посвящено много работ. В частности, И. В. Бойковым и Ю. Ф. Захаровой опубликованы циклы работ по построению оптимальных методов вычисления гиперсингулярных интегралов. В 1975 г. в докладах АН СССР (т. 221, № 1) опубликована статья К. И. Бабенко, в которой он сообщил об открытии им принципиально новых – ненасыщаемых численных методах. Отличительной особенностью последних является способность автоматически подстраиваться под классы корректности решений рассматриваемых задач. Анализ известных квадратурных и кубатурных формул вычисления гиперсингулярных интегралов показал, что они являются насыщаемыми. Поэтому является актуальной задача построения ненасыщаемых алгоритмов вычисления гиперсингулярных и полигиперсингулярных интегралов. Этой задаче посвящена данная работа.
 
		 
	
		
			
			
			
			Автор: Валовик  
				ПРОМЕДИА: М.
			Цель работы: изучение математической модели распространения поверхностных электромагнитных ТЕ-волн в плоском неоднородном диэлектрическом волноводе, заполненном средой с нелинейностью, выраженной законом Керра. Материал и методы исследования: проблема сводится к исследованию нелинейного интегрального уравнения с ядром в виде функции Грина. Существование решений интегрального уравнения доказано с помощью метода сжимающих отображений. Для численного решения задачи предложены два метода: итерационный алгоритм (доказана его сходимость), а также метод, основанный на решении вспомогательной задачи Коши (метод пристрелки). Результаты: доказано существование корней дисперсионного уравнения - постоянных распространения волновода. Получены условия, когда могут распространятся k волны, указаны области локализации соответствующих постоянных распространения. Выводы: полученные результаты свидетельствуют о наличии волноводного режима распространения электромагнитных волн в нелинейной среде.
 
		 
	
		
			
			
			
			Автор: Алехина  
				ПРОМЕДИА: М.
			Рассматривается реализация булевых функций неветвящимися программами с оператором условной остановки. Предполагается, что функциональные операторы с вероятностью [эпсилон] ([эпсилон] (0, 1/2) ) подвержены инверсным неисправностям на выходах, а операторы условной остановки абсолютно надежны. Из полученных результатов о верхней оценке ненадежности неветвящихся программ следует, что почти все функции можно реализовать асимптотически оптимальными по надежности неветвящимися программами, функционирующими с ненадежностью, асимптотически равной [эпсилон] при [эпсилон] [стремящейся к] 0.
 
		 
	
		
			
			
			
			Автор: Богданов  
				ПРОМЕДИА: М.
			Рассматриваются вопросы, связанные с асимптотическим поведением решений неавтономной дискретной системы третьего порядка типа Лотки-Вольтерра. Данная система описывает течение инфекционного заболевания в разнородной группе людей, состоящей из трех популяций. На основе новых методов теории предельных уравнений и предельных функций Ляпунова получены условия асимптотической устойчивости, которые являются условиями полного выздоровления всех популяций. Представленная методика позволяет исследовать асимптотическую устойчивость систем Лотки-Вольтерра любой конечной разности. Рассмотрены дополнительные примеры, показывающие, что полученные на основе вырожденной функции Ляпунова условия асимптотической устойчивости являются не только достаточными, но и необходимыми с точки зрения классических условий устойчивости по линейному приближению.
 
		 
	
		
			
			
			
			Автор: Долгарев  
				ПРОМЕДИА: М.
			Методами галилеевой геометрии решены некоторые системы второго порядка обыкновенных дифференциальных уравнений. Определены галилеевы кривизны евклидовых кривых и галилеевы квадратичные формы евклидовых поверхностей. Приведены примеры отыскания кривых и поверхностей по галилеевым кривизнам и коэффициентам галилеевых квадратичных форм соответственно. Указана галилеева связность для евклидовых поверхностей, позволяющая находить галилееву метрическую функцию евклидовой поверхности. Галилеевыми методами решена задача И. Ньютона - найдены траектории движения материальной точки двух и трех степеней свободы по заданному 2-мерному полю ускорений движения.
 
		 
	
		
			
			
			
			Автор: Янков  
				ПРОМЕДИА: М.
			Описываются характеристики однородных и многостадийных расписаний, выделяется группа сильносвязанных расписаний и области их применения. Предлагается оригинальная нотация для генерации и обработки таких типов расписания. Описывается предметная область построения расписаний для компаний, сдающих автомобили в аренду, и на базе этого примера показывается применение основных элементов нотации. Приводятся данные об эффективности использования предложенной нотации, перспективах ее развития.
 
		 
	
		
			
			
			
			Автор: Белорусец  
				ПРОМЕДИА: М.
			Рассматривается Таблица неопределенных интегралов от логарифмических функций.
 
		 
	
		
			
			
			
			Автор: Лобанов  
				ПРОМЕДИА: М.
			Авторская характеристика современных математиков.
 
		 
	
		
			
			
			
			Автор: Яндаров  
				ПРОМЕДИА: М.
			Дается определение неприводимого множества.
 
		 
	
		
			
			
			
			Автор: Мориц Гельмут 
				Изд-во МИИГАиК: М.
			Книга Гельмута Морица, виднейшего учёного в области математики,
физической геодезии и смежных наук, является ответом на современное положение философии среди естественных и инженерных наук и медицины, попыткой систематически изложить, на доступном для современной студенческой молодёжи уровне, философские аспекты специальных дисциплин, изучаемых в университетах и технических высших учебных заведениях в наше время. Содержание книги представлено в трёх основных частях: А. Человеческое
восприятие и мышление, Б. Естествознание, В. Философия, а также в при-
ложении, в котором автор устанавливает связь между научно-философскими воззрениями на природу и некоторыми богословскими концепциями, рассматривает положительную роль толерантности в жизни современного общества. Часть А посвящена краткому обзору устройства основного жизненного органа человека — мозга и его мыслительной функции, логико-математическим основам мышления и познания. В части Б автор излагает начала современной физики в сочетании с основами информатики и теории систем. В части В дан очерк античных и современных философских течений, рассмотрены модели
Вселенной, соотношение материи и духа, законы природы. Положения основных частей книги подробно освещаются также в приложении на основе классической механики, логики и теории погрешностей. Особое место отведено рассмотрению теоремы Гёделя и её применений. Отдельный интерес может представить обширная библиография по всем рассмотренным проблемам.
 
				
				Предпросмотр: Наука,Разум (Дух) и Вселенная. Введение в  натурфилософиюМонографияПер.с англ.-.pdf (1,0 Мб)
			
		 
	
		
			
			
			
			Автор: Карепов В. А.
				Сиб. федер. ун-т
			В учебном пособии рассмотрены методики определения показателей надежности, физическая природа и причины возникновения
отказов, их виды и классификация. Особое внимание уделено обеспечению надежности машин на стадии их проектирования, приведены методы поддержания надежности при изготовлении и эксплуатации машин.
 
				
				Предпросмотр: Надежность горных машин и оборудования.pdf (0,5 Мб)
			
		 
	
		
	
		
			
			
			
			Автор: Кирюхина Татьяна Александровна
				РИО ПГСХА
			Методические указания предназначены для рациональной организации самостоятельной работы студентов, при выполнении контрольной работы с целью развития навыков самостоятельного построения изображений: рисунков, эскизов, чертежей; включают в себя примеры выполнения заданий, варианты заданий контрольной работы, контрольные вопросы по заданиям.
 
				
				Предпросмотр: НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ. ИНЖЕНЕРНАЯ ГРАФИКА.pdf (0,3 Мб)