СОДЕРЖАНИЕ № 2, том 7, 2001 г.

О маятнике Максвелла

В.И. Николаев МГУ им. М.В. Ломоносова, физический факультет

Обсуждается вопрос о роли выбора системы отсчета при записи уравнения движения и уравнения моментов для твердого тела при решении задач на тему "Плоское движение". Главное внимание уделяется вопросу о том, что при решении таких задач возможны несколько равнозначных вариантов записи исходных динамических уравнений. Основные идеи иллюстрируются на примере двух задач — об одиночном и о двух связанных маятниках Максвелла.

Семинар по физике ядра и частиц. Релятивистский инвариант

Н.Г. Гончарова, Б.С. Ишханов Физический факультет Московского государственного университета им. М.В. Ломоносова, кафедра общей ядерной физики

Обсуждаются задачи по физике ядра и частиц, которые могут быть решены с помощью релятивистского инварианта. Выведена формула для порога энергии и рассчитаны пороги некоторых реакций. Рассмотрены энергии, достижимые на коллайдерах (ускорителях на встречных пучках); даны оценки эквивалентных энергий для некоторых современных коллайдеров.

О локализации интерференционных полос в частично когерентном свете

В.П. Рябухо, О.А. Перепелицына

Саратовский государственный университет, Институт проблем точной механики и управления РАН 410026, Саратов, Московская, 155; E-mail: rvp@sgu.ssu.runnet.ru

Обсуждаются методические вопросы интерпретации эффекта локализации интерференционных полос в частично когерентном свете. Рассматривается проявление пространственной когерентности света в интерферометрах с делением по амплитуде. Показано, что учет взаимного пространственного сдвига интерферирующих полей позволяет непосредственным образом связать пространственное изменение видности интерференционных полос в области их локализации с функцией пространственной когерентности света. Приведены теоретические оценки и экспериментальные результаты для продольного распределения видности полос в области локализации в интерферометре Майкельсона с протяженным источником белого света.

О реализации современных принципов проблемного обучения

В.С. Идиатулин Ижевская государственная сельскохозяйственная академия 426069, Ижевск, ул. Студенческая, 11, <u>root@izha.udm.ru</u>

Рассмотрены методологические основания принципа проблемности, исторические, дидактические и психологические источники проблемных ситуаций, технология их проектирования и разрешения в курсе физики вуза и довузовской подготовки.

Курс физики как основа инженерного университетского образования

К.В. Показеев, Ю.П. Куркин

Московский государственный университет прикладной биотехнологии 109316, Москва, ул. Талалихина, 33 E-mail: sea@phys.msu.su

Обсуждаются основные задачи курса физики в структуре инженерного образования. Рассматриваются особенности его преподавания в технологическом университете.

Методическое обеспечение дистанционного обучения для довузовской подготовки

Л.А. Митлина, А.М. Штеренберг Самарский государственный технический университет 443100, Самара, ул. Молодогвардейская, 244 E-mail: physics@sstu.samara.ru

Рассматриваются необходимые компоненты интегрированных информационных систем, обеспечивающих эффективность их применения для дистанционного обучения физике. Особое внимание уделяется методическому обеспечению довузовской подготовки учащихся с использованием консультативно-справочной подсистемы и подсистемы тренинга информационной системы.

Технолого-ориентированный физический практикум для студентов факультета транспортных систем

Т.В. Созинова, Т.И. Шишелова Иркутский государственный технический университет 664074, г. Иркутск, ул. Лермонтова 83

В работе обосновывается значимость технолого-ориентированного физического практикума применительно к выбранной специальности. Приводится разработанный цикл лабораторных работ для студентов факультета транспортных систем ИрГТУ по контролю горюче-смазочных материалов (ГСМ). Представлено описание одной из лабораторных работ.

Методические особенности спецпрактикума, учитывающего специализацию студентов

Т.И. Шишелова, Л.В. Чиликанова, Т.В. Созинова Иркутский государственный технический университет

Предложен вариант программы " Физические методы исследования" для студентов Иркутского государственного технического университета.

Измерительный комплекс на базе компьютера в лекционных демонстрациях: І. Анализ механического движения с помощью видеокамеры

А.И. Скворцов, А.И. Фишман

Казанский государственный университет 420008, Казань, ул. Кремлевская 18 E-mail andrei.skvortzov@ksu.ru

Описан оригинальный подход в определении кинематических характеристик плоских движений непосредственно во время демонстрационного или лабораторного физического эксперимента. Основу созданного измерительного комплекса составляет персональный компьютер, сопряженный с видеокамерой. Измерительный комплекс заметным образом не изменяет экспериментальные установки и методики проведения демонстраций и лабораторных экспериментов, что позволяет широко использовать его в учебном процессе. Переход от качественных демонстрационных экспериментов к количественным открывает возможность более глубокого проникновения в сущность явлений, делает демонстрационный опыт более информативным и убедительным. Созданное программное обеспечение учитывает специфику лекционных демонстраций, и, кроме того, может использоваться в рамках мультимедийных учебных курсов.

В качестве примера использования комплекса, описаны эксперименты, исследующие изменение импульса системы шаров при столкновениях в различных условиях.

Измерительный комплекс на базе компьютера в лекционных демонстрациях: П. Оптический спектрометр

А.И. Скворцов, А.И. Фишман Казанский государственный университет 420008, Казань, ул. Кремлевская 18 E-mail andrei.skvortzov@ksu.ru

Описаны возможности измерительного комплекса на базе персонального компьютера и видеокамеры для анализа изображений, получаемых на экране аудитории в ходе демонстрационных оптических экспериментов. Для получения количественной информации не требуется дополнительных механических систем для перемещения фоточувствительных элементов, или каких либо других модификаций классических экспериментов. Доказана возможность использования системы видеокамера-компьютер для проведения относительных фотометрических измерений. Созданное для комплекса программное обеспечение может быть использовано без измерительной аппаратуры в рамках учебных мультимедийных курсов. В качестве примера описана работа демонстрационного оптического спектрометра. Проанализированы достоинства и недостатки созданной системы.

Основы системы дистанционного обучения физике

А.М. Афонин, К.В. Глаголев, А.Н. Морозов Московский государственный технический университет им. Н.Э. Баумана, Россия

Рассмотрены основы построения системы дистанционной поддержки учебного процесса по физике в техническом университете. Описаны примеры ее реализации в МГТУ им. Н.Э. Баумана. Предложены способы развития системы.

Компьютерное сопровождение лекций по квантовой физике

А.А. Повзнер, Ф.А.Сидоренко, Р.П.Кренцис УГТУ, кафедра физики, г. Екатеринбург

Анимированная интерактивная графика используется как составная часть лекции, наряду с натурным экспериментом, для повышения наглядности изложения, что особенно актуально для квантовой физики. Рассмотрены разные варианты такого использования: влияние физических параметров на вид графиков, интерактивная имитация работы схемы-установки, опорный графический ряд по плану лекции.

Изучение эмиссии электронов в компьютерном лабораторном практикуме

А.М. Толстик, А.М. Оловянишникова Томск, Томский государственный университет, Сибирский муниципальный лицей, е - mail tolstik@ido.tsu.ru.

Подробно описываются созданные авторами 4 компьютерные лабораторные работы, посвящённые изучению фотоэффекта и термоэлектронной эмиссии, обсуждаются алгоритм работ и методика их выполнения.

Задачи по теме «Динамика материальной точки» для студентов астрономического отделения

К.В. Бычков¹, А.С. Нифанов², И.М. Сараева²

• •

¹Государственный астрономический институт им. П.К. Штернберга,

²Физический факультет МГУ им. М.В. Ломоносова

Предлагается несколько задач для семинарских занятий со студентами–астрономами по теме «Динамика материальной точки».

Согласование курсов естественнонаучных дисциплин и математики в техническом университете

Г.В. Ерофеева, И.П. Чернов, В.В. Ларионов Томский политехнический университет

В статье рассмотрены проблемы согласования курсов естественнонаучных дисциплин и математики. Обсуждаются общие положения согласования и процедура его проведения. Даны рекомендации по распределению дисциплин по семестрам в техническом университете.

Федеральная целевая программа «Государственная поддержка интеграции высшего образования и фундаментальной науки»

И.Н. Завестовская Координатор проектов ФИАН ФЦП «Интеграция»

Публикует материалы, посвященные реализации ФЦП «Интеграция».

Физический учебно-научный центр "Фундаментальная оптика и спектроскопия" Проект А0133 ФЦП "Интеграция" Итоги 1997-2000 гг.

О.Н. Крохин¹, В.Н. Очкин², И.Н. Завестовская³

¹Директор Физического института им. П.Н. Лебедева РАН - головной организации по реализации проекта A0133 ФЦП "Интеграция", председатель совета УНЦ, академик РАН.

 2 Руководитель проекта A0133, зав. отделом ФИАН, профессор, д.ф.-м.н.

³Координатор проекта А0133, ученый секретарь УНЦ, с.н.с. ФИАН, к.ф.-м.н.

Физический учебно-научный центр "Фундаментальная оптика и спектроскопия" создан в 1997 г. в рамках проекта Федеральной целевой программы "Государственная поддержка интеграции высшего образования и фундаментальной науки на 1997-2000г.г." (ФЦП "Интеграция") по направлению 2.1 "Развитие и поддержка системы совместных учебно-научных центров, филиалов университетов и кафедр университетов".

УНЦ представляет собой объединение в единый научно-педагогический коллектив основных участников Проекта № 2.1-35 "Физический учебно-научный центр "Фундаментальная оптика и спектроскопия" - победителя конкурса 1997 г. и Проекта КО699 "Квантовые приборы и нанотехнологии" - победителя конкурса 1998 г. на выполнение за счет средств федерального бюджета работ по проекту ФЦП "Интеграция".