Биоинформатика УДК 519.68;633/635:577/2 Сравнительное исследование кластерного и нейросетевого подходов в задаче анализа белковых структур Д. А. Баранов∗, Г. А. Ососков∗, А. А. Баранов† ∗ Лаборатория информационных технологий Объединённый институт ядерных исследований ул. <...> 78, Москва, Россия, 119454 В данной статье описывается работа, которая является продолжением предыдущего исследования, направленного на поиски решения проблем, возникающих в задаче автоматизации процедуры распознавания генетических белковых структур по их электрофоретическим спектрам (ЭФ-спектрам). <...> Спектральная идентификация сортовой принадлежности зёрен пшеницы является одной из важных сельскохозяйственных задач, для решения которой было предложено использовать Искусственную Нейронную Сеть (ИНС), обученную на выборке из специально подготовленных экспертами сортов. <...> Рассматриваются особенности применения методов нейросетевой классификации и кластерного анализа на примере определения сортовой принадлежности ЭФ-спектров. <...> Правомерность использования предложенных алгоритмов подтверждается положительными результатами, полученными на основе специально подготовленных модельных данных в виде многомерных векторов, имитирующих особенности реальных ЭФспектров, прошедших предварительную обработку, которая включает оцифровку, устранение шумовых и фоновых составляющих, нормализацию. <...> По естественной причине генетического сходства, наблюдаемого у некоторых родственных сортов, ЭФ-спектры имеют трудно различимый характер, что оказывает неблагоприятное влияние на эффективность распознавания схожих экземпляров средствами ИНС. <...> Для преодоления данной особенности был предложен алгоритм кластерного разбиения всего множества сортов на отдельные сортовые группы с последующим применением нейросетевой обработки для каждой группы. <...> Ключевые слова: искусственные нейронные сети, классификация, кластеризация, генетический <...>